Propagation through Generic Level Crossings: A Surface Hopping Semigroup

نویسندگان

  • Clotilde Fermanian Kammerer
  • Caroline Lasser
چکیده

We construct a surface hopping semigroup, which asymptotically describes nuclear propagation through crossings of electron energy levels. The underlying time-dependent Schrödinger equation has a matrix-valued potential, whose eigenvalue surfaces have a generic intersection of codimension two, three or five in Hagedorn’s classification. Using microlocal normal forms reminiscent of the Landau-Zener problem, we prove convergence to the true solution with an error of the order ε1/8, where ε is the semi-classical parameter. We present numerical experiments for an algorithmic realization of the semigroup illustrating the convergence of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation through Conical Crossings: an Asymptotic Semigroup

We consider the standard model problem for a conical intersection of electronic surfaces in molecular dynamics. Our main result is the construction of a semigroup in order to approximate the Wigner function associated with the solution of the Schrödinger equation at leading order in the semiclassical parameter. The semigroup stems from an underlying Markov process which combines deterministic t...

متن کامل

Energy level crossings in molecular dynamics

Energy level crossings are the landmarks that separate classical from quantum mechanical modeling of molecular systems. They induce non-adiabatic transitions between the otherwise adiabatically decoupled electronic level spaces. This review covers results on the analysis of propagation through level crossings of codimension two, a mathematical justification of surface hopping algorithms, and a ...

متن کامل

An Eulerian Surface Hopping Method for the Schrödinger Equation with Conical Crossings

In a nucleonic propagation through conical crossings of electronic energy levels, the codimension two conical crossings are the simplest energy level crossings, which affect the Born– Oppenheimer approximation in the zeroth order term. The purpose of this paper is to develop the surface hopping method for the Schrödinger equation with conical crossings in the Eulerian formulation. The approach ...

متن کامل

Adaptive artificial boundary condition for the two-level Schrödinger equation with conical crossings

In this paper, we present an adaptive approach to design the artificial boundary conditions for the two-level Schrödinger equation with conical crossings on the unbounded domain. We use the windowed Fourier transform to obtain the local wave number information in the vicinity of artificial boundaries, and adopt the operator splitting method to obtain an adaptive local artificial boundary condit...

متن کامل

On transition rates in surface hopping.

Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008